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Introduction
Quantitative risk assessment pro-

vides the formalized scientific input to
agencies that set occupational or environ-
mental standards for regulating toxic
exposures. As currently practiced, risk
assessment relies primarily on animal
data coupled with statistical extrapolation
models. Use of epidemiological data for
quantitative risk assessment has received
scant attention in regulatory documents,
while in the peer-reviewed literature,
some chemical risk assessments using
human data have been published but
rarely has a discussion of principles ap-
peared. A US Environmental Protection
Agency program on improving health risk
assessment essentially ignored epidemio-
logic data.' Several documents address
criteria for qualitatively evaluating the
weight of evidence from epidemiological
studies, but they offer little guidance for
incorporating epidemiological data into
dose-response assessment.23 Indeed, in
1980, the Occupational Safety and Health
Administration declared that "epidemio-
logic studies, if accompanied by reliable
data on exposure levels, may be useful in
priority-setting, but are rarely, if ever,
sensitive enough to be useful in setting
acceptable levels of exposure."2 As occupa-
tional epidemiology studies have mush-
roomed and the methodology has im-
proved, this assessment is outdated. Ways
to incorporate epidemiological data into
the different stages of risk assessment have
been described.4'5 In practice, use of epide-
miology has been inconsistent: poor data
have been used in dose-response assess-
ment and excellent studies have been
ignored.

The purpose of this paper is to
increase scientific rigor in quantitative
risk assessment by proposing a framework
for standardized classification of indi-

vidual epidemiological studies as to their
adequacy for use in dose-response ex-
trapolation. This framework includes cri-
teria that address both validity and utility
and provides two possible roles for epide-
miological data in dose-response assess-
ment. Implementation of these guidelines
would ensure appropriate use of epidemio-
logical data, reduce uncertainty in risk
estimates, and contribute to a more
rational decision-making process. Al-
though I focus on carcinogenic response,
the principles apply, with only minor
modification, to other health endpoints.
The use of epidemiological data in hazard
identification is not addressed, nor is
reconciliation of conflicting studies or
methods to combine studies in dose-
response assessment.

hat Is Risk Assessment?
The National Research Council has

outlined four steps in risk assessment.6
Hazard identification evaluates whether
previous research indicates that the expo-
sure may harm human health. Exposure
assessment identifies the specific agents,
determines the route of human exposure,
and quantifies the amount and duration
of exposure. Dose-response assessment
uses published data to relate dose to
adverse health response and then extrapo-
lates to a (usually) lower environmental
exposure. Finally, risk characterization
combines exposure assessment with dose-
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response assessment to quantify, for a
defined population, the risks predicted to
result from the given exposure.

Hazard identification asks, Do pub-
lished studies suggest that exposure to X
will increase the risk of disease Y?
However, the criteria for scientific consen-
sus on causality are not necessarily the
appropriate criteria for regulating. Analo-
gously, criteria for establishing causality in
a court of law also differ from scientific
notions.7 Recognition that the "rules of
evidence" are different is a prerequisite
for meaningful dialogue between scien-
tists and the regulating community. If
exposure is widespread and the conse-
quences serious, a need for primary preven-
tion may suggest that even a moderate
degree of evidence justifies regulatory ac-
tion. On the other hand, if the probability
of human exposure is low and the adverse
health effects uncertain, then the best
policy may be collection of improved data.

While public health scientists often
estimate risks, risk assessment poses a
more specific question. Epidemiologists
often address the question, What is the
risk of disease Y in the presence of agent
X relative to the risk of disease Y in the
absence ofX? The risk assessor asks, How
many excess cases of disease Y will occur
in a population of size Z due to exposure
to agent X at dose level D? These
questions differ on two counts at least.
First, exposure is defined in quantitative
terms for risk assessment, while epidemio-
logic investigation frequently relies on
qualitative categories. Second, the out-
come is defined as added risk (i.e.,
absolute risk, excess risk, additive risk, or
risk difference) rather than the commonly
used relative risk. Further, risk assess-
ments may specify the exact population to
which results are extrapolated, for ex-
ample, a certain community located in a
specific geographic locale.

The remainder of this paper is
concerned with the dose-response assess-
ment stage. It is assumed that a carcino-
genic hazard has been identified and that
epidemiological data were used, if appro-
priate, for such identification.

The Advantages of
Epidemiological Data

Quantitative risk assessment empha-
sizes data from animal experiments.2'8
This practice is defended on the grounds
that epidemiological studies are too insen-
sitive, involve uncertain measures of expo-
sure as compared with well-controlled
animal dosing, and are hampered by

confounding and other biases-in short,
that epidemiological studies fail to pro-
vide a controlled, randomized, experimen-
tal situation. Nevertheless, human data
alone address the question of interest.
The strength and validity of epidemiologi-
cal evidence has been underestimated,
and the ability to control confounding has
been ignored. The net advantage of using
well-conducted human studies far out-
weighs the disadvantages.

First, the magnitude of error is likely
to be greater when animal data are used.
The uncertainty stemming from interspe-
cies extrapolation is far larger than the
uncertainty resulting from uncontrolled
bias or errors in exposure information in
epidemiological studies.9 Extrapolation
from animals assumes similar rates of
absorption, metabolic pathways, rates for
activation or detoxification, and elimination
rates. It also requires an assumption about
equivalent exposures: should doses be
scaled by milligams per kilogram per day;
milligrams per unit surface area per day
(estimated as mg/kg213/day or mg/kg314/
day, both based on toxicities of anticancer
chemotherapeuticst0'1); or cumulative life-
time milligrams per kilogram? This choice
(ignoring other pharmacokinetic consider-
ations) can result in risk estimates that
differ by a factor of as much as 10 to 100,
and interspecies scaling continues to be
controversial.10'12 Ultimately, differences
in breathing rates, organ sizes, basal
metabolism, rates of cell turnover, and life
spans make comparability difficult to
achieve. In comparison with these vast
uncertainties, the main uncertainty in
human studies-inaccuracies in exposure
data-is generally smaller.9 Other uncer-
tainties in human data, such as confound-
ing, account for errors of a much lower
magnitude, often around 10% to 50%, but
rarely more than a factor of 2 or 3.13X14

A second advantage ofhuman data is
a smaller range of extrapolation. For
instance, estimated exposures in the occu-
pational study of ethylene dibromide15
were about two orders of magnitude
lower than the doses in animal studies16'17
(Figure 1); environmental levels were one
to two orders of magnitude below the
lowest occupational exposures. Typically,
use of human data reduces the range of
extrapolation.

Third, the exposure experience in
animals, although well controlled and
measured, is a poor representation of
human exposure scenarios. Patterns of
variability differ. Exposures in a work-
place setting begin in adult life, are
intermittent in a way not replicated by

animal experiments, and can vary in
intensity both within a day and over a
lifetime. Although environmental expo-
sures may begin long before adulthood,
they are frequently subject to patterns of
variation that (similar to occupational
exposures) reflect changes in ambient
levels and in activities of the individuals.
Because it is unclear how to minimize the
impact of differences between laboratory
and real-world dosing patterns, simplify-
ing assumptions are made for translating
animal exposures to human equivalents.
This issue was recently reviewed10 and will
not be discussed further.

The context of exposure also differs
markedly. Sequestering animals by sex
and administering a single chemical in a
laboratory has little in common with a
scenario of multiple exposures via mul-
tiple routes (air, food, water, cosmetics),
in which chemicals enter the body through
the lungs, the gut, the skin, and so forth,
and in which the lives of the organisms
involve an intricate web of social interac-
tions and biological cycles. The relevant
point is that epidemiological data elimi-
nate the need for many assumptions that
ignore context and patterns of exposure in
predicting health effects.

Fourth, the genetic diversity and the
variability in other endogenous or host
factors in the human population will be
better represented in a human study than
in an animal study. The single strain of
rodents could be hypersensitive to the
agent being tested, leading to overestima-
tion of human risks, or hyperresistant,
leading to underestimation. Furthermore,
with most assays testing single chemicals
only, the impact of other exogenous
exposures on the carcinogenic potency of
that substance remains unknown. Be-
cause endogenous and other exogenous
factors alter susceptibility to disease, the
controlled experiment with single strains
of one or two species exposed to one
chemical has less generalizability than any
reasonably sized human study.

Human data also have limitations
(discussed below). However, neither epi-
demiological studies nor animal bioassays
can directly assess the levels of risk that
are of interest to regulators, that is,
increases in risk of 1 in 1 million or even 1
in 1000. To assess such risks requires
extrapolation from studies in which a
small population, either animal or human,
experiences higher exposures.

These arguments should not be con-
strued as an appeal to wait for human
data when adequate animal studies dem-
onstrate adverse health effects. The Inter-
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TABLE 1-Summary of Classification Framework for the Use of Epidemiological
Studies In Quantitative Risk Assessment

Study Category

1 2 3

Use Can serve as a
basis for
extrapolation

Criteria
1. Moderate to

strong posi-
tive associa-
tion present

2. Strong
biases ruled
out or
unlikely

3. Confounding
controlled or
likely to be
limited

4. Quantifica-
tion of expo-
sures linked
to individuals

5. Monotonic
dose-re-
sponse rela-
tionship

Summary of
requirements

Necessary

Necessary

Necessary

Necessary

Not necessary but
adds certainty
to risk estimates

Criteria 1-4
should be met

national Agency for Research on Cancer
posited that "in the absence of adequate
data on humans, it is biologically plausible
and prudent to regard agents and mix-
tures for which there is sufficient evidence
of carcinogenicity [i.e., a causal associa-
tion] in experimental animals as if they
presented a carcinogenic risk to hu-
mans."'18 This conclusion has been dis-
puted,19 but in the absence of viable
alternatives, it remains an eminently prac-
tical guide for decision making in the
regulatory sphere. When studies of suffi-
cient quality are available for both hu-
mans and animals, the human data are
preferable as a basis for extrapolation.

Frameworkfor Standardized
Classificaon ofIndividual
Epidemioloical Studies
Description ofFramework

Regulatory agencies and risk asses-
sors have promulgated lists of desirable

Can be used to
check plausi-
bility of an ani-
mal-based risk
assessment

Not necessary,
and often this
criterion is not
met

Should be met, at
least partially

Should be met, at
least partially, or
limits on con-
founding should
be estimated

Some quantifica-
tion of expo-
sures is
needed, even if
based on data
external to
study site

Not necessary

Two of criteria 1-3
should be met

Can contribute to
the weight-of-
evidence deter-
mination of
whether the
agent is a
health hazard

If met, adds to
weight of evi-
dence for a
hazard

If met,
strengthens
evidence
regarding
whether agent
is or is not a
hazard

Usually not met

May or may not be
met

All other studies

attributes of epidemiological studies but
no clear criteria for using epidemiological
data in dose-response assessment. The
lack of systematic methodology has led to
regulatory agencies' dealing with human
data on an ad hoc basis, applying different
criteria for each chemical. Based on a
synthesis of empirical experience in this
field, the approach proposed here would
reduce uncertainty, enhance consistency,
and hence foster credibility.

Epidemiological data can provide
input to risk assessment in three ways. For
some studies, designated category 1 stud-
ies, a dose-response relationship can be
derived (usually from an occupational
group) and used to set regulatory stan-
dards, either occupational or environmen-
tal. For other studies, including many null
ones, data are inadequate to confidently
derive a dose-response relationship but
can be used as a check on the plausibility
of an animal-based risk assessment. These
are designated category 2 studies. Cat-
egory 3 encompasses those studies that

cannot contribute to dose-response assess-
ment but can play a role in hazard
identification. Thus a three-tiered evalua-
tion is proposed, based on five criteria
(Table 1): (1) a strong or moderate posi-
tive association that is statistically stable
between cancer of one or more sites and
the agent in question; (2) high overall
quality (i.e., major biases in selection,
follow-up, etc., can be ruled out); (3) no
substantial uncontrolled confounding from
other workplace exposures or lifestyle
factors; (4) exposures that have been well
characterized quantitatively and linked to
the individuals in the study, and which are
sufficiently variable; and (5) evidence for
a dose-response relationship between
exposure and outcome. Criteria 2 and 3
address validity of a study; the remaining
criteria concern its utility.

Criteria 1 through 4 are necessary for
category 1 studies. Criterion 5, though not
critical, adds certainty to risk estimates.
Category 1 studies are appropriate to
serve as a basis for high-to-low-dose
extrapolation. Approaches to fitting dose-
response curves to such data are discussed
in the section under the heading "Cat-
egory 1 Studies." If no epidemiological
study falls into category 1, animal data
should be used for low-dose extrapola-
tion.

Category 2 studies are deficient in, at
most, one of criteria 1 through 3 and
should at least partially satisfy the validity
criteria (2 and 3). Although they may be
deficient in criterion 4, some quantifica-
tion of exposure is necessary, even if
based on data external to the study site.
Well-designed null studies fall in this
category. These studies can be used in the
dose-response phase of risk assessment
for narrowing the range of uncertainty.

Studies substantially deficient in cri-
teria 1 through 4 would, in most cases, fall
into category 3; they are unlikely to be
useful in quantitative risk assessment,
though they may play a role in qualitative
assessments (i.e., hazard identification).
A notable exception to the category 2
designation may occur if even a crude
quantification of exposure is not possible;
in this case, a study that would otherwise
fall into category 2 would be assigned to
category 3.

Implementing the Criteria
1. A positive association with reason-

able statistical precision is needed for
category 1. When the risk among the
exposed is not notably elevated, this
criterion can still be met if a subgroup
with higher or longer exposure does show
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a clearly elevated risk. Additionally, there
may be exceptional circumstances where
the risk is high but not very precise, yet
external data support a causal interpreta-
tion; in such a case, one might consider
this criterion met. Studies not meeting
this criterion may fall into category 2.
Thus, excellent studies finding either no
positive association or one that differs
only marginally from a null association
can be used for checking plausibility of
animal-based risk estimates, as described
below.

2. Overall quality of the study entails
appropriateness of study design, control
of potential sources of bias, proper statis-
tical analysis, adjustment for confounding
(see section 3 below), validity of measure-
ment of exposure and of outcome, ad-
equate study size for reasonable preci-
sion, and so forth. Because industrial
settings often involve the most concen-
trated exposures in the population, occu-
pational studies are highly sensitive, hav-
ing identified about half the known
human carcinogens.20

Considerations especially critical to
occupational studies are (1) length and
age distribution of follow-up time (Was
the average length of follow-up as long as
the latency for the cancer of interest?)
and (2) appropriate use of exposure data
(Were those with extremely short or low
exposures or a low probability of exposure
appropriately excluded from the "ex-
posed" categories?). Shore et al. discuss
exposure issues in relation to use of
epidemiological studies for quantitative
risk assessment.4

Study size and its corollary, precision,
take on a particular meaning in occupa-
tional cohort studies.21 A study with fewer
workers (or person-years) may have
greater power and precision than a larger
study if the expected number of deaths is
greater, which could occur because of an
older age distribution or a greater preva-
lence of other factors predisposing to
disease. Also, small studies with high
exposures may be more powerful than
larger ones with lower exposures.21'22

Bias could result from inappropriate
or poorly defined selection criteria for
establishing a cohort; ascertainment of
outcomes that is differential with respect
to the exposure (or ascertainment of
exposures that is differential with respect
to outcome); inadequate follow-up with
respect to latency periods; systematic
errors in exposure data taken from em-
ployment and industrial hygiene records;
and so forth. Loss to follow-up can be a
problem, particularly if related to dura-

tion of employment. Since exposure indi-
ces are usually constructed independently
of vital status data, differential misclassifi-
cation is often unlikely. Nondifferential
misclassification frequently results in bias
toward the null; however, when exposure
is categorized and misclassification is not
into adjacent categories, the bias can be
away from the null.23 The more frequent
and widespread the measurements of
exposure, the less likely that misclassifica-
tion will cause substantial bias.

It should be emphasized that no
epidemiological study is perfect and that
well-conducted ones are unlikely to yield
strong biases in effect measures. Neverthe-
less, with small effects (e.g., mortality
ratios < 2), the probability of bias should
be lower if these effect measures are to be
credible enough to support their use in
low-dose extrapolation. Determination of
limits on the degree of bias may be
possible.

3. The condition that substantial
confounding can be excluded may seem
difficult to meet in occupational mortality
studies, many of which do not collect
much information on behavioral factors.
However, for the putative confounder to
explain a sizable positive association, the
confounder characteristics of the exposed
population would have to differ consider-
ably from those in the unexposed popula-
tion.24 Where only external comparisons
have been conducted, such differences
are often plausible, though even for such
strong risk factors as cigarette smoking in
lung cancer studies, standardized morbid-
ity or mortality ratios greater than 1.5 to
2.0 are unlikely to be explained by
smoking differences.13'14 This counterintui-
tive result is because smoking habits do
not vary much within sex, age, and time
period categories. Weaker risk factors for
the disease, such as dietary determinants
of cancer, are even less likely to produce
nonnegligible confounding. Furthermore,
when analyses use internal comparisons,
either with an unexposed referent group
employed at the same site orwith compari-
sons among several exposure levels, lif-
estyle differences are even less likely.25
Hence, direct data on confounding are
often not necessary for this criterion to be
met. Where other workplace exposures
are present and have been shown to be
related to the outcome of interest, firmer
information on confounding may be
needed, particularly since occupational
exposures are sometimes highly corre-
lated within a cohort. Confounding is
plausible when effect measures are low
(mortality ratios < 2); however, quantita-

tive limits on the magnitude of potential
confounding can be calculated.14 More-
over, the presence of other exposures that
have no established association with the
outcome is not persuasive evidence of
confounding. For example, the presence
of sodium dioxide in a study of lung
cancer and arsenic does not detract from
the validity of the estimated carcinogenic
effect of arsenic, since there is no prior
evidence that sodium dioxide is carcino-
genic.26

4. At least crude measurements of
the exposure are needed to conduct a
dose-response assessment. Whereas the
measurements themselves are almost al-
ways ecological (i.e., exposure is usually
not measured in individuals but rather in
areas of a plant), individual information
on work history (job titles, departments,
etc.) and periods of employment can be
used to estimate individual exposures by
time period and hence cumulatively.27
While gaps in the exposure measurements
are common (in some departments and
some time periods), a certain amount of
extrapolation and interpolation can be
tolerated. Future developments involving
the use of internal markers of exposure
may improve upon measures such as air
sampling, but this technology is not ready
for application in dose-response assess-
ments or the needed historical tissue or
blood samples do not exist. Nevertheless,
almost all observational studies use ap-
proximations for exposure measurements
(e.g., dietary histories for the recent
period are often used as surrogates for
lifetime dietary intake in studies of cancer
and nutrition). Considering the goal of
risk assessment, intelligent use of existing
records is likely to yield reasonably valid
estimates of human health effects at dose
levels observed in the study, a prerequisite
for valid extrapolated risks.

Between a crude exposure definition
(exposed/not exposed dichotomy) and a
year-by-year exposure level for each indi-
vidual worker lies a vast gray area encom-
passing qualitative exposure levels (low,
medium, high) or scant measurements
applied to all workers or broad job
categories. Industrial hygiene measure-
ments may be available for a plant other
than the one where the occupational
study was conducted (but one using
similar processes) or in only one of several
plants where a study was conducted (see,
e.g., reference 15). Such studies, if other-
wise well conducted, will fall into category
2. Similarly, where exposure measure-
ments have been linked not with indi-
vidual work histories by job type or
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department, but only with duration of
employment, the study would usually fall
into category 2.

5. A dose-response relationship, that
is, a monotonic rise in risk with increasing
exposure, is useful. If the dose-response
relationship is flat (no increased risk at
any exposure level) or negative, then
criterion 1 above will not be met. A
monotonic dose-response relationship is
not necessary, however. For instance, if at
high doses an agent caused an increase in
cardiovascular deaths with a shorter la-
tency than for cancer, then the dose-
response relationship for cancer might fall
at high exposures. Alternatively, the shape
of a dose-response relationship can be
distorted by the healthy worker survivor
effect,2829 and controlling for this bias is
not straightforward.-9 30

A monotonic dose-response relation-
ship may also be obscured if confounding
is differential by exposure level; there are
substantial errors ofmeasurement;31 dura-
tion has been used as a surrogate for
cumulative exposure; or the range of
exposures is too narrow. For all these
reasons, the dose-response criterion is
not a prerequisite for the category 1
designation, and reliance on a trend test is
not appropriate. Finally, if the published
data do not provide several dose levels, a
dose-response relationship will not be
established; nevertheless, a category 1
designation is possible if mean exposure
estimates are available.

Discussion ofthe Framework
One objection to the above frame-

work is that well-conducted null studies
appear to be penalized. First, unlike
current regulatory practice, the proposed
framework does not neglect these studies.
Category 2 studies play an important role
in integrating animal and human data and
can contribute to the low-dose extrapola-
tion by narrowing the range of uncer-
tainty, as described below under the
heading category 2 studies and in other
publications. Second, this objection stems
from not recognizing the purpose of these
criteria. The criteria have no relation to a
value judgment: a given category 1 study
may or may not be of higher quality than a
particular category 2 study. Category 1
studies are, however, better equipped to
serve as a basis for extrapolation. An
extremely well-conducted study may pro-
vide inadequate data to be the basis of
extrapolation if no association between
exposure and disease is found. For ex-

ample, a study of methylene chloride-
exposed workers had highly detailed his-

torical industrial hygiene data, but no
stable positive association was observed at
cancer sites for which there was an a
priori hypothesized relationship.32 The
validity criteria (2 and 3) were met, but
two of the utility criteria (1 and 4) were
not. In the course of a regulatory hearing
in California, it was argued that quantita-
tive use of this study should be relegated
to an appendix. In contrast, under the
proposed framework, this study would
play a prominent role as a check on the
plausibility of animal-based risk esti-
mates, including those based on pharma-
cokinetic modeling.

These criteria are intended as guide-
posts, not rigid rules. For instance, if
animal data are lacking or inconclusive
and the human exposure information is
crude or the study small, epidemiological
data may be used for extrapolation to
furnish a plausible range of risk estimates
in the interim, pending more complete
data.

In the past, risk assessors' decisions
about epidemiological data have ap-
peared arbitrary, while a simultaneous
tendency has been to perform dose-
response assessments as a series of simple
algorithms. The spirit of these criteria is to
foster consistency, but not rigidity. Each
criterion should be considered in detail,
but the overall goal must be to have a
reliable process for making the best use of
available data. No one should have illu-
sions that this process can be carried out
mechanically. On the other hand, the lack
of category 1 human studies does not
imply that a compound is not carcinogenic
in humans. As is the current custom, use
of animal data is warranted in such
circunmstances.

Methodsfor Use of
Epidemiological Studies in
Dose-Response Extrapolaton
Category 1 Studies

Animal-based risk assessments re-
quire two extrapolations: one between
species and the other from high to low
dose. Epidemiological data eliminate the
interspecies extrapolation. The high-to-
low-dose extrapolation is still needed. A
few fundamental points are presented
here.

Because animal and human data
differ fundamentally in their structure,33
the statistical extrapolation models take
different forms. For both, the aim is to

derive a potency value that represents the
increase in disease occurrence per unit of

exposure. In animal studies, disease occur-
rence is measured as lifetime risk and
exposure is often measured as daily
concentration per unit of body weight.
Potency then represents the increase in
lifetime risk per unit of daily dose. Since
humans are not observed for a full
lifetime, disease occurrence is measured
as rates (number of cases per person-
time), and exposure may be measured by
duration and concentration or in cumula-
tive time at a concentration level. Thus,
potency is in units of mortality rates or
ratios for a given (often cumulative)
exposure. To derive lifetime risk, a sepa-
rate step is needed, in which potencies are
applied to life tables constructed from
age-specific death rate data5,34 or to
proportional mortality data.35

Models to derive potency values
from occupational mortality data gener-
ally fall into two classes: (1) models in
which the excess disease rate is a function
(often linear) of exposure only (additive
models) and (2) models in which the
excess disease rate is a function of
exposure and background disease rates or
factors that determine these background
rates (multiplicative models). Both types
of models can be embellished to include
thresholds, to incorporate the healthy
worker effect, and so forth. A full discus-
sion of such methods is beyond the scope
of this paper (see, e.g., references 5, 9, and
33 through 37).

Category 2 Studies
On the basis of the five criteria

outlined above, many epidemiological
studies, including null studies, will fall into
category 2. These studies can still be
useful in quantitative risk assessment to
check plausibility of models fitted to
animal data. Exposures in occupational
settings frequently fall between the doses
administered in experimental bioassays
and the low levels to which one wishes to
extrapolate (Figure 1). Therefore, if the
animal-based extrapolation predicts risks
that are inconsistent with occupational
study data, the predictions at environmen-
tal levels are probably also in error.
Discrepancies between predictions and
observations may permit rejection of
models and a narrowing of the range of
plausible risk estimates, as was achieved
for ethylene dibromide.38 Conversely, if
predicted risks are consistent with ob-
served mortality in the intermediate range
of exposure, then greater confidence can

be placed in the risks predicted at low
exposures.2239'40 (Exposures from active
smoking are also in an intermediate range
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and can be similarly used to assess
plausibility of risk predictions.34)

Five steps are needed to implement
such comparisons: (1) Human exposures
are converted to the units of exposure in
the animal study. (2) The calculated unit
risk is applied to the doses received by the
persons studied. (3) Adjustment is made
for partial lifetime observed. (4) Pre-
dicted numbers of deaths are compared
with observed numbers. (5) Concordance
is assessed and interpreted.

Example: In a cohort of 161 ethylene
dibromide-exposed workers from two
manufacturing plants, 8 cancer deaths
were observed, 5.8 expected, for a margin-
ally positive association with exposure.15
Among those with the longest exposure
and with 15 or more years since start of
exposure, there were 4 observed and 1.6
expected deaths (criterion 1 possibly but
not clearly met). Though completeness of
follow-up was not 100%, its duration
seemed adequate-30 years for nearly
half the workers (criterion 2 met). Poten-
tially carcinogenic exposures were present
in one plant, and others may have been
present at the other plant (criterion 3 not
clearly met). Finally, a few exposure mea-
surements had been made, but in only one
of the plants and not at a variety of
locations or times. The link to individuals
was therefore based not on department or
job category but solely on duration of
employment (criterion 4 only partially
met). Still, these data permitted a cat-
egory 2 classification. The exposure rate
of 0.9 ppm for 8 hours per workday was
assumed for each worker, and translated
into units of milligrams per kilogram per
day over a lifetime; the lifetime risk
estimated for 1 mg/kg/day based on a
standard risk assessment derived from
one animal bioassay was multiplied by this
dose, then adjusted to the number of
years of follow-up out of a 70-year
lifetime. These individual risks were
summed, resulting in an estimated 50
cancer deaths predicted by the animal
data to occur in this cohort in the given
follow-up period. The clear discrepancy
between this prediction and the 8 deaths
observed led to recognition of a major
deficiency in the animal bioassay (very
early deaths) and the need for a less
simplistic statistical model for the analysis
of the bioassay data.38

In other instances, this method will
add very little additional information,
reflecting the imprecision in the original
epidemiology or the low predicted effect
size, as in the case of saccharin.21 Alterna-
tively, the observed human data may be
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FIGURE 1-Ethylene dibromide exposures In three studies.

quite consistent with the animal-based
predictions, as in the case of ethylene
oxide,22 thereby strengthening the credibil-
ity of the interspecies extrapolation. With
null studies, the information from this
exercise could be used to plan further
epidemiological studies with more atten-
tion to the exposure levels and the likely
range of risks. Clear-cut discrepancies
between the animal-based predictions
and the observed mortality should raise
questions about the wisdom of instituting
regulations based on those predictions.

This approach to category 2 studies
provides a meaningful yardstick for evalu-

ating the predictive validity of both the
interspecies and high-to-low-dose extrapo-
lation. Applications to positive,2 equivo-
cal,38 and null39 studies serve as an
antidote to the tendency to dismiss non-
positive studies. If implemented as an
integral part of risk assessment, these
comparisons would improve quantitative
estimates by narrowing the range of
uncertainty.

Although a formal test of consistency
would be desirable, the main sources of
uncertainty are not statistical. For this
reason, consistency is more appropriately
evaluated in real-world terms. That is,
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predictions may fall close to observed
mortality and within its confidence bounds,
suggesting compatibility of the animal-
derived extrapolation with actual human
experience and increasing confidence in
the estimated low-level risk. A three- or
fivefold difference may put predictions
outside the statistical confidence bounds,
but still within a range of tolerable
uncertainty, considering the vast exposure
differences and other uncertainties in
animal-to-human extrapolation. Finally,
observed risks may lie far above or far
below the animal-based predictions, sug-
gesting the need to revise the extrapolated
risk estimates.

Conclusions
Risk assessment is a bridge between

science and policy. A serious appraisal of
current methods and practice suggests
that much can be done to improve
scientific rigor in risk assessment. This
paper proposes a classification framework
and methods for the use of epidemiologic
data in dose-response assessment. Al-
though solutions to the basic dilemma of
estimating low-dose risks are not close at
hand and controversies will continue,4'
implementation of the framework and
methods described here would contribute
to a firmer scientific foundation for
low-dose risk estimates and the ensuing
regulatory actions.

Epidemiology offers the most rel-
evant data for the assessment of human
health risks at low exposures to environ-
mental agents. That epidemiology has
played a small role in most quantitative
risk assessments to date attests to the
reluctance of experimental scientists to
recognize the strength and validity of
well-conducted observational studies. It
also attests to the reluctance of epidemi-
ologists to engage in risk assessment
activities. Unfortunately, where epidemi-
ologists have not been present to interpret
human studies, other with less understand-
ing of epidemiology have taken on that
role. The result has been inconsistent
evaluations of epidemiological evidence,
inappropriate use of some human data,
and unwarranted dismissal of other stud-
ies. The present paper is offered as a first
step toward reversing this state of af-
fairs. D

Acknowledgments
Partial support for this work was provided by
grant 1P42-ES05948 from the National Insti-
tute of Environmental Health Sciences.

The author acknowledges Dr Raymond
Neutra, for introducing her to the field, and
Drs Donna Armstrong, Aaron Cohen, David
Goldsmith, John Goldsmith, David Savitz, Jack
Siemiatycki, Leslie Stayner, and Steve Wing for
helpful comments on earlier drafts.

References
1. Research to Improve Health Risk Assess-

ments (RIHRA) Program. EPA/600/9-90/
038. Washington, DC: US Environmenta!
Protection Agency; 1990.

2. Occupational Safety and Health Adminis-
tration. Identification, classification and
regulation of potential occupational car-
cinogens. Federal Register. 1980;45(Janu-
ary 22, 1980):5001-5296.

3. Workshop Report on EPA Guidelines for
Carcinogen Risk Assessment: Use ofHuman
Evidence. EPA/625/3-90/017. Washing-
ton, DC: US Environmental Protection
Agency; 1989.

4. Shore RE, Iyer V, Altshuler B, et al. Use of
human data in quantitative risk assessment
of carcinogens: impact on epidemiologic
practice and the regulatory process. Regul
ToxicolPharmacoL 1992;15:180-221.

5. Thomas D, Darby S, Fagnani F, et al.
Definition and estimation of lifetime detri-
ment from radiation exposures: principles
and methods. Health Phys. 1992;63:259-
272.

6. National Research Council, National Acad-
emy of Sciences. Risk Assessment in the
Federal Government: Managing the Process.
Washington, DC: National Academy Press;
1983.

7. Christoffel T, Teret SP. Epidemiology and
the law: courts and confidence intervals.
AmJPublic Health. 1991;81:1661-1666.

8. US Environmental Protection Agency.
Guidelines for cancer risk assessment.
Federal Register. 1986;51(September 24,
1986):33992-34001.

9. Smith AH. Epidemiologic input to environ-
mental risk assessment. Arch Environ
Health. 1988;43:124-127.

10. US Environmental Protection Agency.
Draft report: a cross-species scaling factor
for carcinogen risk assessment based on
equivalence of mg/kg314/day. Federal Regis-
ter. 1992;57(June 5, 1992):24152-24173.

11. Travis CC, White RK. Interspecific scaling
of toxicity data. RiskAnaL 1988;8:119-125.

12. Davidson IWF, Parker JC, Beliles RP.
Biological basis for extrapolation across
mammalian species. Regul Toxicol Pharma-
col. 1986;6:211-237.

13. Axelson 0. Aspects of confounding and
effect modification in the assessment of
occupational cancer risk. J Toxicol Environ
Health. 1980;6:1127-1131.

14. Flanders WD, Khoury MJ. Indirect assess-
ment of confounding: graphic description
and limits on effect of adjusting for
covariates. Epidemiology. 1990;1:239-246.

15. Ott MG, Schamweber HC, Langner RR.
Mortality experience of 161 employees
exposed to ethylene dibromide in two
production units.BrJIndMed. 1980;37:163-
168.

16. Carcinogenicity Bioassay of 1,2-Dibromoeth-
ane in F344 Rats and B6C3F1 Mice (Inhala-
tion Study). Bethesda, Md: National Can-
cer Institute; 1982. NCI Technical Report
Series No. 210.

17. Bioassay of 1,2-Dibromoethane for Possible
Carcinogenicity. Bethesda, Md: National
Cancer Institute; 1978. NCI Technical
Report Series No. 86.

18. L4RC Monographs on the Evaluation of
Carcinogenic Risks to Humans, Volume 60:
Some Industrial Chemicals. Lyon, France:
International Agency for Research on
Cancer; 1994.

19. Ames BN, Gold LW. Too many rodent
carcinogens: mitogenesis increases muta-
genesis. Science. 1990;249:970-971.

20. Monographs on the Evaluation of the Carci-
nogenic Risk ofChemicals to Humans, Suppl
7: Overall Evaluations ofCarcinogenicity:An
Updating of IARC Monographs Volumes
1-42. Lyon, France: International Agency
for Research on Cancer; 1987.

21. Hertz-Picciotto I, Neutra RR. Resolving
discrepancies among studies: the influence
of dose on effect size. Epidemiology. 1994;5:
156-163.

22. Hertz-Picciotto I, Neutra RR, Collins JF.
Ethylene oxide and leukemia. JAMA. 1987;
257:2290.

23. Dosemeci M, Wacholder S, Lubin JH.
Does nondifferential misclassification of
exposure always bias a true effect toward
the null value? Am J Epidemiol. 1990;132:
746-748.

24. Cornfield J, Haenszel W. Some aspects of
retrospective studies. J Chron Dis. 1960;1 1:
523-34.

25. Siemiatycki J, Wacholder S, Dewar R, et
al. Smoking and degree of occupational
exposure: are internal analyses in cohort
studies likely to be confounded by smoking
status?AmJInd Med. 1988;13:59-69.

26. Lubin JH, Pottern LM, Blot WJ, et al.
Respiratory cancer among copper smelter
workers: recent mortality statistics. J Occup
Med. 1981;23:779-784.

27. Rice CH. Retrospective exposure assess-
ment: a review of approaches and direc-
tions for the future. In: Rappaport SM,
Smith TJ, eds. Exposure Assessment for
Epidemiology and Hazard Control. Chelsea,
Mich: Lewis Publishers; 1991:186-191.

28. Hertz-Picciotto I, Smith AH. Arsenic expo-
sure and lung cancer: observations on
theshape and magnitude of the dose-
response curve. Scand J Work Environ
Health. 1993;19:217-226.

29. Robins J. A new approach to causal
inference in mortality studies with a sus-
tained exposure period: application to
control of the healthy worker survivor
effect. Math Modeling. 1986;7:1393-1512.

30. Arrighi HM, Hertz-Picciotto I. The evolv-
ing concept of the healthy worker survivor
effect. Epidemiology. 1994;5:189-196.

31. Armstrong B. The effects of measurement
error on estimates of exposure-response
relationships. In: P Band, ed. Occupational
Cancer Epidemiology. Berlin, Germany:
Springer-Verlag; 1990:50-63.

32. Hearne FT, Grose F, Pifer JW, et al.
Methylene chloride mortality study: dose-
response characterization and animal
model comparison. J Occup Med. 1987;29:
217-228.

33. Hertz-Picciotto I, Holtzman DA. Issues in
conducting a cancer risk assessment using
epidemiologic data: arsenic as a case study.
Exp Pathol. 1989;37:219-223.

34. Hertz-Picciotto I, Hu S-W. Contribution of

490 American Journal of Public Health April 1995, Vol. 85, No. 4



Public Health Policy Forum

cadmium in cigarettes to lung cancer: an
evaluation of risk assessment methodolo-
gies. Arch Environ Health. 1994;49:297-
302.

35. Smith AH, Hopenhayn-Rich C, Bates MN,
et al. Cancer risks from arsenic in drinking
water. Environ Health Perspect. 1992;97:259-
267.

36. Stayner L, Smith R, Bailer AJ, Luebeck
EG, Moolgavkar SH. Modeling epidemio-
logic studies of occupational cohorts for

the quantitative assessment ofcarcinogenic
hazards.AmJInd Med. 1995; in press.

37. Crump KS, Allen BC. Methods for quanti-
tative risk assessment using occupational
studies.Am Stat. 1985;39(4, pt2):442-450.

38. Hertz-Picciotto I, Gravitz N, Neutra R.
How do cancer risks predicted from animal
bioassays compare with the epidemiologic
evidence? The case of ethylene dibromide.
RiskAnaL 1988;8:205-214.

39. Alexeeff GV, Hertz-Picciotto I. Consider-

ation of species concordance and pharma-
cokinetics in a risk assessment of methy-
lene chloride. Toxicologist. 1990;10:351.

40. Goldman LR, Hayward D, Siegel DM, et
al. Dioxin and mortality from cancer. N
EnglJMed 1991;324:1811. Letter.

41. Hertz-Picciotto I. Environmental risk as-
sessment. In: Talbott EO, Craun G, eds.
An Introduction to Environnental Epideiu-
ology. Boca Raton, Fla: Lewis Publishers.
In press.

t NlJll4*lr |

T11.

pNggs

Comment: Integrating Epidemiologic
Data into Risk Assessment

Daniel Wartenberg, PhD, and Ronald Simon, JD

Policymakers use two principal tools
in evaluating human health risk: epidemi-
ology and quantitative risk assessment.
Epidemiology is the gold standard be-
cause it assesses directly human health
risk. However, when epidemiologic data
do not exist or when epidemiologic stud-
ies are not conclusive, regulators often
turn to quantitative risk assessment. For
example, we know the dangers of smoking
cigarettes and the benefits of low-fat diets
and exercise through series of observa-
tional epidemiologic studies. We know
the utility of a variety ofdrugs and surgical
procedures through carefully controlled
clinical trials. However, with compounds
less well studied in humans, such as
dioxin, quantitative risk assessment is
relied upon to set regulatory policy. Using
epidemiology to assess human health risk
is not controversial; using quantitative risk
assessment is. To explain this difference
and the possible implications of using
epidemiologic data in quantitative risk
assessment, we explain the basics of
quantitative risk assessment, point out
some of its limitations, and raise some
cautions on the use of epidemiologic data
in quantitative risk assessment models.

Quantitative risk assessment is a
statistical method designed to forecast
human health risk where risk is hard to
measure directly, as with people who
shower in water contaminated with tri-
chlorethylene or who dwell beside Super-
fund sites.12 The basic tenet of quantita-
tive risk assessment is that data on health
effects detected in small populations of
animals exposed to high concentrations of
suspect chemicals can be used to predict
health effects in large human populations

exposed to lower concentrations of the
same chemical. Most federal agencies
conform to a 1983 National Academy of
Sciences report2 that defines quantitative
risk assessment as a four-stage process.
Though each stage has objective ele-
ments, each also requires some decisions
based on subjective judgements into which
personal values may enter. Disagreement
and controversy often follow.

The goal of the first stage of quantita-
tive risk assessment, hazard identification,
is to identify all situations or substances
that can, in any amount, pose a risk to
human health as well as all the possible
adverse health effects. Omission of com-
pounds or specific health effects from
consideration at this stage can undermine
the validity of a quantitative risk assess-
ment.

The goal of the second stage, expo-
sure assessment, is to estimate for each
material listed in the hazard identification
stage the amount a typical person is likely
to encounter. The three components to
this step are determination of the source
of the substance, the movement of the
substance through the environment, and
the uptake by people (i.e., ingestion,
inhalation, and dermal exposure). Omis-
sion of sources, exposure pathways, bio-
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